Главная » Способы заработка  » Методы определения критической концентрации мицеллообразования. Методы определения ккм

Методы определения критической концентрации мицеллообразования. Методы определения ккм

На величину ККМ влияют:

Строение и длина углеводородной цепи;

Характер полярной группы;

Наличие в растворе индифферентных электролитов и неэлектролитов;

Температура.

Влияние двух первых факторов отражает формула

RTIn ККМ = а bп, (12.1)

где а постоянная, характеризующая энергию раство­рения полярной группы; b постоянная, характеризую­щая энергию растворения, приходящуюся на одну груп­пу СН 2 ; п число групп СН 2 .

Из уравнения (12.1) следует, что чем больше энер­гия растворения гидрофобной группы и чем больше их число, тем меньше ККМ, т. е. тем легче образуется ми­целла.

Напротив, чем больше энергия растворения полярной группы, роль которой состоит в том, чтобы удерживать образующиеся ассоциаты в воде, тем больше ККМ.

Величина ККМ ионогенных ПАВ значительно боль­ше, чем неионогенных при одинаковой гидрофобности молекул.

Введение электролитов в водные растворы неионо­генных ПАВ мало влияет на величину ККМ и размеры мицеллы.

Введение электролитов в водные растворы ионоген­ных ПАВ оказывает весьма значительное влияние, кото­рое можно оценить уравнением:

In ККМ = а" b"п k In с , (12.2)

где а" и Ъ" постоянные, имеющие тот же физический смысл, что и а и Ь в уравнении 12.1; k константа; с концентрация индифферентного электролита.

Из уравнения 12.2 следует, что увеличение концент­рации индифферентного электролита (с) уменьшает ККМ.

Введение неэлектролитов (органических растворите­лей) в водные растворы ПАВ тоже приводит к измене­нию ККМ. При наличии солюбилизации устойчивость мицелл повышается, т. е. уменьшается ККМ. Если солюбилизация не наблюдается (т. е. молекулы неэлект­ролита не входят внутрь мицеллы), то они, как правило, увеличивают ККМ.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ

Влияние температуры на ККМ ионогенных ПАВ и неионогнных ПАВ различно. Повышение температуры приводит к увеличению ККМ ионогенного ПАВ изза де­загрегирующего действия теплового движения.

Повышение температуры приводит к уменьшению ККМ неионогенного ПАВ за счет дегидратации оксиэтиленовых цепочек (мы помним, что неионогенные ПАВ всегда образованы полиоксиэтиленовыми цепочками и углеводородными «хвостами»).

МЕТОДЫ ОПРЕДЕЛЕНИЯ

КРИТИЧЕСКОЙ КОНЦЕНТРАЦИИ

МИЦЕЛЛООБРАЗОВАЫИЯ

Методы определения ККМ основаны на регистрации резкого изменения физикохимических свойств растворов ПАВ при изменении концентрации. Это связано с тем, что образование мицеллы ПАВ в растворе означает появление в нем новой фазы, а это приводит к резкому изменению любого физикохимического свойства системы.

На кривых зависимостей «свойство раствора ПАВ концентрация ПАВ» появляется излом. При этом левая часть кривых (при более низких концентрациях) описы­вает соответствующее свойство раствора ПАВ в молекулярном (ионном) состоянии, а правая в коллоидном. Абсциссу точки излома условно считают соответствую­щей переходу молекул (ионов) ПАВ в мицеллы т. е. критической концентрацией мицеллообразования (ККМ).


Рассмотрим некоторые из этих методов.

КОНДУКТОМЕТРИЧЕСКИЙ МЕТОД

ОПРЕДЕЛЕНИЯ ККМ

Кондуктометрический метод основан на измерении элек­трической проводимости растворов ПАВ. Понятно, что его можно использовать только для ионогенных ПАВ. В обла­сти концентраций до ККМ зависимости удельной и экви­валентной электрической проводимости от концентрации ПАВ соответствуют аналогичным зависимостям для ра­створов средних по силе электролитов. При концентрации, соответствующей ККМ, на графиках зависимостей наблю­дается излом, обусловленный образованием сферических мицелл. Подвижность ионных мицелл меньше подвижно­сти ионов и, кроме того, значительная часть противоионов находится в плотном слое коллоидной частицы мицеллы и, следовательно, существенно снижает электропроводность растворов ПАВ. Поэтому при увеличении концентрации ПАВ больше ККМ возрастание удельной электропроводно­сти значительно ослабляется (рис. 12.4), а молярная элект­ропроводность уменьшается резче (рис. 12.5)

L n KKM L n c L n KKM L n c *

Рис. 12.4 Рис. 12.5

Зависимость удельной, Зависимость молярной

проводимости электрической проводимости

от концентраций от концентрации

ОПРЕДЕЛЕНИЕ ККМ

НА ОСНОВЕ ИЗМЕРЕНИЙ ПОВЕРХНОСТНОГО

НАТЯЖЕНИЯ РАСТВОРОВ

Поверхностное натяжение водных растворов ПАВ уменьшается с ростом концентрации вплоть до ККМ. Изо­терма = f (ln с ) в области низких концентраций ПАВ имеет криволинейный участок, на котором в соответствии с уравнением Гиббса адсорбция ПАВ на поверхности ра­створа возрастает с ростом концентрации. При определен­ной концентрации с т криволинейный участок изотермыпереходит в прямую с постоянным значением , т. е. адсорбция достигает максимального значения. В этой об­ласти на межфазной границе формируется насыщенный мономолекулярный слой. При дальнейшем увеличении концентрации ПАВ (с > ККМ) в объеме раствора обра­зуются мицеллы, и поверхностное натяжение практически не изменяется. ККМ определяется по излому изотермы при выходе ее на участок, параллельный оси In с (рис. 12.6).

Измерение поверхностного натяжения

Позволяет опреде­лить ККМ как ионогенных,

так и неионогенных ПАВ. Ис­следуемые

ПАВ необходимо тщательно очищать от

приме­сей, поскольку их присутствие может

явиться причиной по­явления минимума на

изотер­ме при концентрациях, близ­ких к

Ln c m Ln KKM Ln c ККМ.

Рис. 12.6

Зависимость поверхностного

натяжения от nc

СПЕКТРОФОТОМЕТРИЧЕСКИЙ,

ИЛИ ФОТОНЕФЕЛОМЕТРИЧЕСКИЙ МЕТОД

ОПРЕДЕЛЕНИЯ ККМ

Солюбилизация красителей и углеводородов в мицел­лах ПАВ позволяет определять ККМ ионогенных и неионогенных ПАВ, как в водных, так и в неводных растворах. При достижении в растворе ПАВ концентрации, соответствующей ККМ, растворимость водонерастворимых кра­сителей и углеводородов резко увеличивается. Наиболее удобно применять жирорастворимые красители, интенсивно окрашивающие растворы ПАВ при концентрациях выше ККМ. Солюбилизацию измеряют методом, основанным на светорассеянии, или спектрофотометрически.

Цель работы : определение ККМ в растворах мицеллообразующих ПАВ.

Общие замечания к выполнению работы . Колбы для растворов, пипетки, вакуумная про­бирка и капилляр должны быть тщательно обработаны хромовой смесью и много­кратно промыты водопроводной, а затем дистиллированной водой.

Исходный раствор ПАВ готовят следующим образом: сначала наливают воду из бюретки, а затем добавляют пипеткой раствор, полученный у преподавателя и в указанном им количестве. Затем готовят серию растворов в соответствии с таблицей 2.1, дозируя воду и исходный раствор пипеткой.

Во избежание образования пены воду в исходный раствор следует приливать по стенке сосуда и полученный раствор не взбалтывать!

Предварительно готовят 8-10 растворов ПАВ различной концентрации с таким расчетом, чтобы ожидаемая величина ККМ приходилась примерно на середину охватывающего интервала концентраций. Рекомендуется следующий порядок приготовления растворов ПАВ различной концентрации: из исходного 0,1 М раствора ПАВ последовательным разбавлением в 10 раз готовят по 50-100 мл 10 - 2 , 10 - 3 , 10 - 4 , 10 - 5 М растворов. Из них удобно готовить растворы любой промежуточной концентрации. Для приготовления 10 мл x ×10 - n M раствора надо к x мл 10 - n M раствора прибавить (10–x ) мл воды.

Растворы гидролизующихся ПАВ (мыла жирных кислот, олеаты, канифолевые масла, нафтенаты и т.д.), необходимо разбавлять 0,001 М раствором щелочи для подавления гидролиза при высоких разбавлениях. Растворы негидролизующихся ПАВ разбавляют дистиллированной водой. Растворы готовят в склянках с притертыми пробками. Посуду и пипетки предварительно тщательно моют хромовой смесью и ополаскивают водопроводной и дистиллированной водой.

Ход работы для определения ККМ олеата калия . Приготовить из 0,01 M раствора олеата калия С 17 Н 33 СOOК растворы 5×10 - 3 ; 2,5×10 - 3 ; 1×10 - 3 М. Из 1×10 - 3 M раствора приготовить растворы 5×10 - 4 ; 2,5×10 - 4 и 1,25×10 - 4 М. Растворы следует готовить в склянках с пробками для предотвращения взаимодействия с углекислым газом воздуха. Поверхностное натяжение определяют по методу Ребиндера, начиная с наиболее разбавленного раствора и заканчивая наиболее концентрированным раствором. Перед очередным измерением сосуд с капилляром промывают исследуемым раствором, а затем наливают этот раствор в измерительную емкость. Ввиду медленности установления равновесия в поверхностном слое скорость образования пузырька должна составлять 1-1,5 мин .



Полученные экспериментальные данные заносятся в таблицу 2.1.

Таблица 2.1 – Результаты измерения поверхностного натяжения мицеллообразующего ПАВ – олеата калия, при различных концентрациях

№ п/п С , моль Dh , мм s, мДж /м 2 ККМ, моль Г ¥ , моль /м 2 S 0 , м 2 l , м
1,25×10 - 4
2,5×10 - 4
5×10 - 4
1×10 - 3
2,5×10 - 3
5×10 - 3
по данным таблицы 2.1 строят график зависимости (рисунок 2.3).
йб din О

У неионогенных ПАВ можно определить величину предельной адсорбции () по уравнению.

Водные растворы многих поверхностно-активных веществ обладают особыми свойствами, отличающими их как от истинных растворов низкомолекулярных веществ, так и от коллоидных систем. Одной из отличительных особенностей растворов ПАВ является возможность существования их как в виде молекулярно-истинных растворов, так и в виде мицеллярных - коллоидных.

ККМ - это концентрация , при достижении которой при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Переход из молекулярного состояния в мицеллярное происходит, как правило, в достаточно узкой области концентраций, ограниченной, так называемыми, граничными концентрациями. Впервые наличие таких граничных концентраций обнаружил шведский ученый Экваль. Он установил, что при граничных концентрациях многие свойства растворов резко меняются. Эти граничные концентрации лежат ниже и выше средней ККМ; только при концентрациях, меньших минимальной граничной концентрации, растворы ПАВ аналогичны истинным растворам низкомолекулярных веществ.

Методы определения ККМ:

Определение ККМ может осуществляться при изучении практически любого свойства растворов в зависимости от изменения их концентрации. Наиболее часто в исследовательской практике используются зависимости мутности растворов, поверхностного натяжения, электрической проводимости, коэффициента преломления света и вязкости от общей концентрации растворов. Примеры получающихся зависимостей приведены на рисунках:

рис.1 - поверхностное натяжение (s) растворов додецилсульфата натрия при 25 о С

рис.2 - эквивалентная электрическая проводимость (l) растворов децилтриметиламмоний бромида при 40 о С

рис.3 - удельная электрическая проводимость (k) растворов децилсульфата натрия при 40 о С

рис.4 - вязкость (h/с) растворов додецилсульфата натрия при 30 о С

Исследование любого свойства растворов ПАВ от его концентрации позволяет определить среднюю концентрацию , при которой система совершает переход в коллоидное состояние. К настоящему моменту описано более сотни разнообразных методов определения критической концентрации мицеллообразования; некоторые из них, кроме ККМ, позволяют также получать богатую информацию о структуре растворов, величине и форме мицелл, их гидратации и т.д. Мы остановимся только на тех методах определения ККМ, которые используются наиболее часто.

Для определения ККМ по изменению поверхностного натяжения растворов ПАВ часто используются методы максимального давления в газовом пузырьке , сталагмометра, отрыва кольца или уравновешивания пластины, измерения объема или формы висящей или лежащей капли, взвешивания капель и др .Определение ККМ этими методами основано на прекращении изменения поверхностного натяжения раствора при предельном насыщении адсорбционного слоя на поверхности раздела «вода - воздух», «углеводород - вода», «раствор - твердая фаза». Наряду с определением ККМ эти методы позволяют найти величину предельной адсорбции, минимальную площадь, приходящуюся на молекулу в адсорбционном слое. На основании экспериментальных значений поверхностной активности на границе «раствор-воздух» и предельных площадей, приходящихся на молекулу в насыщенном адсорбционном слое, может быть определена также длина полиоксиэтиленовой цепи неионогенных ПАВ и величина углеводородного радикала. Определение ККМ при различных температурах часто используют для расчета термодинамических функций мицеллообразования.

Исследования показывают, что наиболее точные результаты получаются при измерении поверхностного натяжения растворов ПАВ методом уравновешивания пластины . Достаточно хорошо воспроизводятся результаты, найденные сталогмометрическим методом . Менее точные, но достаточно корректные данные получаются при использовании метода отрыва кольца . Плохо воспроизводятся результаты чисто динамических методов.

  • При определении ККМ вискозиметричесим методом экспериментальные данные выражают обычно в виде зависимости приведенной вязкости от концентрации растворов ПАВ. Вискозиметрический метод также позволяет определить наличие граничных концентраций мицеллообразования и гидратацию мицелл по характеристической вязкости. Этот метод особенно удобен для неионогенных ПАВ в связи с тем, что у них отсутствует электровязкостный эффект.
  • Определение ККМ по светорассеянию основано на том, что при образовании мицелл в растворах ПАВ резко возрастает рассеяние света частицами и увеличивается мутность системы. По резкому изменению мутности раствора и определяют ККМ. При измерении оптической плотности или светорассеяния растворов ПАВ часто наблюдают аномальное изменение мутности, особенно в том случае, если ПАВ содержит некоторое количество примесей. Данные светорассеяния используют для определения мицеллярной массы, чисел агрегации мицелл и их формы.
  • Определение ККМ по диффузии проводят измеряя коэффициенты диффузии, которые связаны как с размером мицелл в растворах, так и с их формой и гидратацией. Обычно значение ККМ определяют по пересечению двух линейных участков зависимости коэффициента диффузии от разведения растворов. Определение коэффициента диффузии позволяет рассчитать гидратацию мицелл или их размер. Совмещая данные измерения коэффициента диффузии и коэффициента седиментации в ультрацентрифуге, можно определить мицеллярную массу. Если измерить гидратацию мицелл независимым методом, то по коэффициенту диффузии можно определить форму мицелл. Наблюдение за диффузией проводится обычно при введении в растворы ПАВ дополнительного компонента – метки мицелл, поэтому метод может дать искаженные результаты при определении ККМ, если произойдет смещение мицеллярного равновесия. В последнее время коэффициент диффузии измеряют при использовании радиоактивных меток на молекулах ПАВ. Такой способ не смещает мицеллярного равновесия и дает наиболее точные результаты.
  • Определение ККМ рефрактометрическим методом основано на изменении коэффициента преломления растворов ПАВ при мицеллообразовании. Этот метод удобен тем, что не требует введения дополнительных компонентов или применения сильного внешнего поля, которые могут сместить равновесие «мицеллы-молекулы», и оценивает свойства системы практически в статических условиях. Он требует, однако, тщательного термостатирования и точного определения концентрации растворов, а также необходимости учета времени эксперимента в связи с изменением коэффициента преломления стекла за счет адсорбции ПАВ. Метод дает хорошие результаты для неионогенных ПАВ с невысокой степенью оксиэтилирования.
  • В основе определения ККМ ультраакустическим методом лежит изменение характера прохождения ультразвука через раствор при образовании мицелл. При изучении ионогенных ПАВ этот метод удобен даже для весьма разбавленных растворов. Растворы неионогенных веществ труднее поддаются характеристике этим методом, особенно если растворенное вещество имеет малую степень оксиэтилирования. С помощью ультраакустического метода можно определить гидратацию молекул ПАВ как в мицеллах, так и в разбавленных растворах.
  • Широко распространенный кондуктометрический метод ограничен только растворами ионогенных веществ. Кроме ККМ он позволяет определить степень диссоциации молекул ПАВ в мицеллах, что необходимо знать для корректировки мицеллярных масс, найденных по светорассеянию, а также для введения поправки на электровязкостный эффект при расчете гидратации и чисел ассоциации методами, связанными с явлениями переноса.
  • Иногда используются такие методы, как ядерный магнитный резонанс или электронный парамагнитный резонанс , которые дают возможность кроме ККМ измерять «время жизни» молекул в мицеллах, а также как ультрафиолетовая и инфракрасная спектроскопия, которые позволяют выявить расположение молекул солюбилизата в мицеллах.
  • Полярографические исследования, так же как и измерения рН растворов, часто связаны с необходимостью введения третьего компонента в систему, что, естественно, искажает результаты определения ККМ. Методы солюбилизации красителя, солюбилизационного титрования и хроматографии на бумаге , к сожалению оказываются недостаточно точными для измерения ККМ, но зато позволяют судить о структурных изменениях мицелл в относительно концентрированных растворах.

Текущая страница: 11 (всего у книги 19 страниц) [доступный отрывок для чтения: 13 страниц]

67. Химические методы получения коллоидных систем. Методы регулирования размеров частиц в дисперсных системах

Существует большое число методов получения коллоидных систем, позволяющих тонко регулировать размеры частиц, их форму и строение. Т. Сведберг предложил разделить методы получения коллоидных систем на две группы: диспергационные (механическое, термическое, электрическое измельчение или распыление макроскопической фазы) и конденсационные (химическая или физическая конденсация).

Получение золей. В основе процессов лежат реакции конденсации. Процесс протекает в две стадии. Сначала формируются зародыши новой фазы а затем в золе создается слабое пересыщение, при котором уже не происходит образования новых зародышей, а идет только их рост. Примеры. Получение золей золота.



2KAuO 2 + 3HСHO + K 2 CO 3 = 2Au + 3HCOOK + КНСО 3 + H 2 O

На образующихся микрокристаллах золота адсорбируются ионы аурата, являющиеся потенциалобразующими ионами. Противоионами служат ионы К +

Состав мицеллы золя золота схематически можно изобразить так:

{mnAuO 2 - (n-x)K + } x- xK+.

Можно получить желтые (d ~ 20 нм), красные (d ~ 40 нм) и синие (d ~ 100 нм) золи золота.

Золь гидроксида железа может быть получен по реакции:



При получении золей важно тщательно соблюдать условия проведения реакции, в частности необходимы строгий контроль рН и присутствие ряда органических соединений в системе.

С этой целью поверхность частиц дисперсной фазы ингибируют за счет образования на ней защитного слоя из ПАВ или за счет образования на ней комплексных соединений.

Регулирование размеров частиц в дисперсных системах на примере получения твердых наночастиц. Смешиваются две идентичные обратные микроэмульсионные системы, водные фазы которых содержат вещества А и В , образующие в ходе химической реакции труднорастворимое соединение. Размеры частиц новой фазы будут ограничены размером капель полярной фазы.

Наночастицы металлов могут быть получены также при введении в микроэмульсию, содержащую соль металла, восстановителя (например, водорода или гидразина) или при пропускании газа (например, СО или H 2 S) через эмульсию.

Факторы, влияющие на протекание реакции:

1) соотношение водной фазы и ПАВ в системе (W = / [ПАВ]);

2) структура и свойства солюбилизированной водной фазы;

3) динамическое поведение микроэмульсий;

4) средняя концентрация реагирующих веществ в водной фазе.

Однако во всех случаях размер наночастиц, образующихся в процессах реакции, контролируется размером капель исходной эмульсии.

Микроэмульсионные системы используют для получения органических соединений. Большинство исследований в этой области относится к синтезу наночастиц сферической формы. Вместе с тем большой научный и практический интерес представляет получение асимметричных частиц (нитей, дисков, эллипсоидов) с магнитными свойствами.

68. Лиофильные коллоидные системы. Термодинамика самопроизвольного диспергирования по Ребиндеру-Щукину

Лиофильными коллоидными системами называются ультрамикрогенные системы, которые самопроизвольно образуются из макроскопических фаз, являются термодинамически устойчивыми как для относительно укрупненных частиц дисперсной фазы, так и для частиц при их дроблении до молекулярных размеров. Образование лиофильных коллоидных частиц может определяться приростом свободной поверхностной энергии при разрушении макрофазового состояния, которая, возможно, компенсируется вследствие повышения энтропийного фактора, прежде всего броуновского движения.

При низких значениях поверхностного натяжения могут самопроизвольно путем разложения макрофазы возникать стабильные лиофильные системы.

К лиофильным коллоидным системам относят коллоидные поверхностно-активные вещества, растворы высокомолекулярных соединений, а также студни. Если учесть, что критическое значение поверхностного натяжения сильно зависит от диаметра лиофильных частиц, то образование системы с частицами больших размеров возможно при более низких значениях свободной межфазной энергии.

Рассматривая зависимость при изменении свободной энергии монодисперсной системы от размера всех частиц, необходимо учитывать влияние дисперсии на некоторую величину свободной удельной энергии частиц, находящихся в дисперсной фазе.

Образование равновесной коллоидно-дисперсной системы возможно только при условии, что все значения диаметра частиц могут лежать именно в той области дисперсности, где размер этих частиц может превышать размеры молекул.

Исходя из вышесказанного условие образования лиофильной системы и условие ее равновесности можно представить в виде уравнения Ребиндера-Щукина:



выражения, характерного условию самопроизвольного диспергирования.

При достаточно низких, но изначально конечных значениях σ (изменение межфазной энергии) может происходить самопроизвольное диспергирование макрофазы, могут возникать термодинамические равновесные лиофильные дисперсные системы с едва заметной концентрацией частиц дисперсной фазы, которые в значительной степени будут превосходить молекулярные размеры частиц.

Значение критерия RS может определять условия равновесия лиофильной системы и возможность ее самопроизвольного возникновения из той же макрофазы, которая убывает с ростом концентрации частиц.

Диспергирование – это тонкое измельчение твердых, жидких тел в какой-либо среде, в результате чего получают порошки, суспензии, эмульсии. Диспергирование применяют для получения коллоидных и вообще дисперсных систем. Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости. При диспергирование твердых тел происходит их механическое разрушение.

Условие самопроизвольного образования лиофильной частицы дисперсной системы и ее равновесия можно также получить, используя кинетические процессы, например при помощи теории флуктуаций.

При этом получаются заниженные значения, поскольку флуктуация не учитывает некоторые параметры (время ожидания флуктуаций данного размера).

Для реальной системы могут возникать частицы имеющие дисперсную природу, с определенными распределениями по размерам.

Исследования П. И. Ребиндера и Е. Д. Щукина позволили рассмотреть процессы устойчивости критических эмульсий, определи процессы образования, привели расчеты различных параметров для таких систем.

69. Мицеллообразование в водных и неводных средах. Термодинамика мицеллообразования

Мицеллообразование – самопроизвольная ассоциация молекул поверхностно-активных веществ (ПАВ) в растворе.

Поверхностно-активные вещества (ПАВ) – вещества, адсорбция которых из жидкости на поверхности раздела с другой фазой приводит к значительному понижению поверхностного натяжения.

Строение молекулы ПАВ – дифильное: полярная группа и неполярный углеводородный радикал.


Строение молекул ПАВ


Мицелла – подвижный молекулярный ассоциат, существующий в равновесии с соответствующим мономером, причем молекулы мономера постоянно присоединяются к мицелле и отщепляются от нее (10 –8 –10 –3 с). Радиус мицелл 2–4 нм, агрегируются 50–100 молекул.

Мицеллообразование – процесс, аналогичный фазовому переходу, при котором происходит резкий переход от молекулярно-дисперсного состояния ПАВ в растворителе к ассоциированному в мицеллы ПАВ при достижении критической концентрации мицеллообразования (ККМ).

Мицеллообразование в водных растворах (прямые мицеллы) обусловлено равенством сил притяжения неполярных (углеводородных) частей молекул и отталкивания полярных (ионогенных) групп. Полярные группы ориентированы в сторону водной фазы. Процесс мицеллообразования имеет энтропийную природу и связан с гидрофобными взаимодействиями углеводородных цепей с водой: объединение углеводородных цепей молекул ПАВ в мицеллу ведет к росту энтропии из-за разрушения структуры воды.

При формировании обратных мицелл полярные группы объединяются в гидрофильное ядро, а углеводородные радикалы образуют гидрофобную оболочку. Энергетический выигрыш мицеллообразования в неполярных средах обусловлен выгодностью замены связи «полярная группа – углеводород» на связь между полярными группами при их объединении в ядро мицеллы.


Рис. 1. Схематическое представление


Движущими силами образования мицелл являются межмолекулярные взаимодействия:

1) гидрофобное отталкивание между углеводородными цепями и водным окружением;

2) отталкивание одноименно заряженных ионных групп;

3) вандерваальсово притяжение между алкильными цепями.

Появление мицелл возможно лишь выше некоторой температуры, которая называется точкой Крафта . Ниже точки Крафта ионные ПАВ, растворяясь, образуют гели (кривая 1), выше – возрастает общая растворимость ПАВ (кривая 2), истинная (молекулярная) растворимость существенно не меняется (кривая 3).


Рис. 2. Образование мицилл

70. Критическая концентрация мицеллообразования (ККМ), основные методы определения ККМ

Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуется в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора. Появление мицелл фиксируется по изменению кривой зависимости свойства раствора от концентрации ПАВ. Свойствами могут быть поверхностное натяжение, электропроводность, ЭДС, плотность, вязкость, теплоемкость, спектральные свойства и т. д. Наиболее распространенные методы определения ККМ: по измерению поверхностного натяжения электропроводности, светорассеяния, растворимости неполярных соединений (солюбилизации) и абсорбции красителей. Область ККМ для ПАВ с числом атомов углерода в цепи 12–16 находится в интервале концентраций 10 –2 –10 –4 моль/л. Определяющим фактором является соотношение гидрофильных и гидрофобных свойств молекулы ПАВ. Чем длиннее углеводородный радикал и менее полярна гидрофильная группа, тем меньше величина ККМ.

Значения ККМ зависят от:

1) положения ионогенных групп в углеводородном радикале (ККМ увеличивается при смещении их к середине цепи);

2) наличия в молекуле двойных связей и полярных групп (наличие увеличивает ККМ);

3) концентрации электролита (увеличение концентрации приводит к снижению ККМ);

4) органических противоионов (присутствие противоионов уменьшает ККМ);

5) органических растворителей (увеличение ККМ);

6) температуры (имеет сложную зависимость).

Поверхностное натяжение раствора σ определяется концентрацией ПАВ в молекулярной форме. Выше значения ККМ σ практически не меняется. По уравнению Гиббса, dσ = – Гdμ , при σ = const, химический потенциал (μ ) практически не зависит от концентрации при с о > ККМ. До ККМ раствор ПАВ близок по своим свойствам к идеальному, а выше ККМ начинается резко отличаться по свойствам от идеального.

Система «ПАВ – вода» может при изменении содержания компонентов переходить в различные состояния.

ККМ, при которой из мономерных молекул ПАВ образуются сферические мицеллы, т. н. мицеллы Гартли-Ребиндера – ККМ 1 (резко изменяются физико-химические свойства раствора ПАВ). Концентрация, при которой начинается изменение мицеллярных свойств, называется второй ККМ (ККМ 2). Происходит изменение структуры мицелл – сферической к цилиндрической через сфероидальную. Переход сфероидальной формы в цилиндрическую (ККМ 3), как и сферической в сфероидальную (ККМ 2), происходит в узких концентрационных областях и сопровождается ростом числа агрегации и уменьшением площади поверхности раздела «мицелла – вода», приходящейся на одну молекулу ПАВ в мицелле. Более плотная упаковка молекул ПАВ, большая степень ионизации мицелл, более сильный гидрофобный эффект и электростатическое отталкивание приводят к уменьшению солюбилизирующей способности ПАВ. При дальнейшем увеличении концентрации ПАВ уменьшается подвижность мицелл, и происходит их сцепление концевыми участками, при этом образуется объемная сетка – коагуляционная структура (гель) с характерными механическими свойствами: пластичностью, прочностью, тиксотропией. Подобные системы с упорядоченным расположением молекул, обладающие оптической анизотропией и механическими свойствами, промежуточными между истинными жидкостями и твердыми телами, называют жидкими кристаллами. При увеличении концентрации ПАВ гель переходит в твердую фазу – кристалл. Критическая концентрация мицеллообразвания (ККМ) – концентрация ПАВ в растворе, при которой в системе образуются в заметных количествах устойчивые мицеллы и резко изменяется ряд свойств раствора.

71. Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии

Явление образования термодинамически устойчивого изотропного раствора обычно малорастворимого вещества (солюбилизата) при добавлении ПАВ (солюбилизатора) называют солюбилизацией . Одним из наиболее важных свойств мицеллярных растворов является их способность солюбилизировать различные соединения. Например, растворимость октана в воде составляет 0,0015 %, а в 10 %-ном растворе олеата натрия растворяется 2 % октана. Солюбилизация растет с увеличением длины углеводородного радикала ионных ПАВ, а для неионных – с увеличением числа оксиэтиленовых звеньев. На солюбилизацию сложным образом влияют присутствие и природа органических растворителей, сильных электролитов, температура, другие вещества, природа и структура солюбилизата.

Различают прямую солюбилизацию («дисперсионная среда – вода») и обратную («дисперсионная среда – масло»).

В мицелле солюбилизат может удерживаться за счет сил электростатического и гидрофобного взаимодействия, а также других, например водородного связывания.

Известно несколько способов солюбилизации веществ в мицелле (микроэмульсии), зависящих как от соотношения его гидрофобных и гидрофильных свойств, так и от возможных химических взаимодействий между солюбилизатом и мицеллой. Строение микроэмульсий «масло – вода» сходно со строением прямых мицелл, поэтому способы солюбилизации будут идентичны. Солюбилизат может:

1) находиться на поверхности мицеллы;

2) ориентироваться радиально, т. е. полярная группа – на поверхности, а неполярная – в ядре мицеллы;

3) полностью погружаться в ядро, а в случае неионных ПАВ – располагаться в полиоксиэтиленовом слое.

Количественная способность к солюбилизации характеризуется величиной относительной солюбилизации s – отношением числа молей солюбилизированного вещества N сол. к числу молей ПАВ, находящегося в мицеллярном состоянии N миц:



Микроэмульсии относятся к микрогетерогенным самоорганизующимся средам и являются многокомпонентными жидкими системами, содержащими частицы коллоидного размера. Образуются они самопроизвольно при смешении двух жидкостей с ограниченной взаимной растворимостью (в простейшем случае воды и углеводорода) в присутствии мицеллообразующего ПАВ. Иногда для образования гомогенного раствора необходимо добавлять немицеллобразующий ПАВ, т. н. ко-ПАВ (спирт, амин или эфир), и электролит. Размер частиц дисперсной фазы (микрокапель) составляет 10–100 нм. Благодаря малым размерам капель микроэмульсии прозрачны.

От классических эмульсий микроэмульсии отличаются размером диспергированных частиц (5–100 нм для микроэмульсий и 100 нм – 100 мкм для эмульсий), прозрачностью и стабильностью. Прозрачность микроэмульсий связана с тем, что размер их капель меньше длины волны видимого света. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом.

Мицеллообразование и солюбилизация в прямых и обратных мицеллах. Микроэмульсии.

Микроэмульсии обладают рядом уникальных свойств, которых нет у мицелл, монослоев или полиэлектролитов. Водные мицеллы могут вбирать в себя одну или несколько молекул растворенного вещества. Микрокапля микроэмульсии обладает большей поверхностью и большим внутренним объемом переменной полярности, может вбирать существенно больше молекул растворяемого вещества. Эмульсии в этом отношении близки к микроэмульсиям, но у них меньше поверхностный заряд, они полидисперсны, нестабильны и непрозрачны.

72. Солюбилизация (коллоидное растворение органических веществ в прямых мицеллах)

Важнейшим свойством водных растворов ПАВ является солюбилизация. Процесс солюбилизации связан с гидрофобными взаимодействиями. Выражается солюбилизация в резком повышении растворимости в воде в присутствии ПАВ малополярных органических соединений.

В водных мицеллярных системах (прямые мицеллы) солюбилизируются вещества, нерастворимые в воде, например бензол, органические красители, жиры.

Это обусловлено тем, что ядро мицеллы проявляет свойства неполярной жидкости.

В органических мицеллярных растворах (обратные мицеллы) , в которых внутренняя часть мицелл состоит из полярных групп, солюбилизируются полярные молекулы воды, причем количество связанной воды может быть значительным.

Растворяемое вещество называется солюбилизатом (или субстратом ), а ПАВ – солюбилизатором .

Процесс солюбилизации является динамическим: субстрат распределяется между водной фазой и мицеллой в соотношении, зависящем от природы и гидрофильно-липофильного баланса (ГЛБ) обоих веществ.

Факторы, влияющие на процесс солюбилизации:

1) концентрация ПАВ . Количество солюбилизированного вещества увеличивается пропорционально концентрации раствора ПАВ в области сферических мицелл и дополнительно резко возрастает при образовании пластинчатых;

2) длина углеводородного радикала ПАВ . С увеличением длины цепи для ионных ПАВ или числа оксиэтилированных звеньев для неионных ПАВ солюбилизация увеличивается;

3) природа органических растворителей;

4) электролиты . Добавление сильных электролитов обычно сильно увеличивает солюбилизацию вследствие уменьшения ККМ;

5) температура . При повышении температуры солюбилизация возрастает;

6) присутствие полярных и неполярных веществ;

7) природа и структура солюбилизата.

Стадии процесса солюбилизации:

1) адсорбция субстрата на поверхности (быстрая стадия);

2) проникновение субстрата в мицеллу или ориентация внутри мицеллы (более медленная стадия).

Способ включения молекул солюбилизата в мицеллы водных растворов зависит от природы вещества. Неполярные углеводороды в мицелле располагаются в углеводородных ядрах мицелл.

Полярные органические вещества (спирты, амины, кислоты) встраиваются в мицеллу между молекулами ПАВ так, чтобы их полярные группы были обращены к воде, а гидрофобные части молекул ориентированы параллельно углеводородным радикалам ПАВ.

В мицеллах неионных ПАВ молекулы солюбилизата, например фенола, закрепляются на поверхности мицеллы, располагаясь между беспорядочно изогнутыми полиоксиэтиленовыми цепями.

При солюбилизации неполярных углеводородов в ядрах мицелл углеводородные цепи раздвигаются, в результате размер мицелл увеличивается.

Явление солюбилизации находит широкое применение в различных процессах, связанных с применением ПАВ. Например, в эмульсионной полимеризации, получении фармацевтических препаратов, пищевых продуктов.

Солюбилизация – важнейший фактор моющего действия ПАВ. Это явление играет большую роль в жизнедеятельности живых организмов, являясь одним из звеньев процесса обмена веществ.

73. Микроэмульсии, строение микрокапель, условия образования, фазовые диаграммы

Различают два типа микроэмульсий (рис. 1): распределение капелек масла в воде (м/в) и воды в масле (в/м). Микроэмульсии испытывают структурные превращения при изменениях относительных концентраций масла и воды.


Рис. 1. Схематическое представление микроэмульсий


Микроэмульсии образуются только при определенных соотношениях компонентов в системе. При изменении числа компонентов, состава или температуры в системе происходят макроскопические фазовые превращения, которые подчиняются правилу фаз и анализируются с помощью диаграмм состояния.

Обычно строят «псевдотройные» диаграммы. В качестве одного компонента рассматривают углеводород (масло), другого – воду или электролит, третьего – ПАВ и ко-ПАВ.

Построение фазовых диаграмм проводят по методу сечений.

Обычно левый нижний угол данных диаграмм соответствует весовым долям (процентам) воды или солевого раствора, правый нижний угол – углеводороду, верхний – ПАВ или смеси ПАВ: ко-ПАВ с определенным их соотношением (чаще 1:2).

В плоскости треугольника составов кривая отделяет область существования однородной (в макроскопическом смысле) микроэмульсии от областей, где микроэмульсия расслаивается (рис. 2).

Непосредственно вблизи кривой существуют набухшие мицеллярные системы типов «ПАВ – вода» с солюбилизированным углеводородом и «ПАВ – углеводород» с солюбилизированной водой.

ПАВ (ПАВ: ко-ПАВ) = 1:2


Рис. 2. Фазовая диаграмма микроэмульсионной системы


По мере увеличения отношения вода/масло в системе происходят структурные переходы:

микроэмульсия в/м → цилиндры воды в масле → ламелярная структура ПАВ, масла и воды → микроэмульсия м/в.

Читайте также:
  1. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  2. V. Правила и методы исследований при трансфузии (переливании) консервированной донорской крови и эритроцитсодержащих компонентов
  3. Административные методы управления природопользованием и охраной окружающей среды.
  4. Анализ воспитательного потенциала семьи. Методы изучения семьи.
  5. Анализ результатов теста. Стили и методы семейного воспитания
  6. Антропогенные воздействия на гидросферу и их экологические последствия. Методы защиты гидросферы.

Особое дифильное строение молекул ПАВ было удачно охарактеризовано Гартли, который один из первых исследовал мицеллярные растворы, как «раздвоение личности». Именно дифильность молекул ПАВ обуславливает их тенденцию собираться на границе раздела фаз, погружая в воду гидрофильную часть и изолируя от воды гидрофобную. Эта тенденция определяет их поверхностную активность, т.е. способность адсорбироваться на границе раздела вода–воздух или вода–масло, смачивать поверхность гидрофобных тел, образовывать структуры типа мыльных пленок или липидные мембраны.

С ростом асимметерии молекул (удлинением гидрофобной части) увеличивается их поверхностная активность – правило Траубе. При этом усиливается их особенное поведение в растворе.

Длинноцепочечные ПАВ (число атомов углерода в цепи n c = 10 – 20), для которых характерен оптимальный баланс гидрофобных и гидрофильных свойств, обладающие в растворах особыми свойствами, представляют большой интерес. Эти ПАВ при малых концентрациях образуют истинные растворы, диспергируясь до отдельных молекул (ионов). С ростом концентрации ПАВ в растворе за счет двойственности свойств молекул происходит самоассоциация их в растворе, в результате чего образуются мицеллы. Термин мицелла был введен Мак-Беном в 1913 году.

Мицеллы – агрегаты, образующиеся при кооперативном связывании мономеров между собой при концентрациях ПАВ в растворе, значения которых превышают узкую область, называемую критической концентрацией мицеллообразования (ККМ).

При достижении ККМ в растворах ПАВ в полярном растворителе (воде) углеводородные цепи молекул ПАВ объединяются за счет гидрофобных взаимодействий в углеводородное ядро, а гидратированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку. Мицеллы находятся в термодинамическом равновесии с молекулами (ионами) .

В основе методов определения ККМ лежит анализ экспериментально полученной зависимости физического свойства раствора от концентрации ПАВ, так как в области ККМ происходит резкое изменение ряда свойств мицеллярных растворов ПАВ. Наиболее часто на практике используются зависимости мутности растворов (t) или оптической плотности, поверхностного натяжения (s), удельной электропроводности (χ), коэффициента преломления света (n), диффузии (D), вязкости (h), осмотического давления (p) от концентрации ПАВ. ККМ определяют по точке, соответствующей излому на кривых зависимостей свойств растворов от концентрации ПАВ. Типичные примеры регистрируемых зависимостей приведены на рисунке 1.

Рисунок 11 – Зависимость свойства системы от концентрации ПАВ

В настоящее время известно более ста разнообразных методов определения ККМ, некоторые которых также дают информацию о структуре растворов, величине и форме мицелл и других свойств. Рассмотрим наиболее часто используемые методы.

Кондуктометрический метод определения ККМ заключается в изменении удельной электрической проводимости раствора в зависимости от концентрации ионогенного ПАВ .

Широкое распространение получил метод определения ККМ по данным измерения поверхностного натяжения .

Вискозиметрический метод определения ККМ использует зависимости приведенной вязкости от концентрации растворов ПАВ. Этот метод удобен для неионогенных ПАВ.

Нахождение ККМ по светорассеянию основано на резком увеличении рассеяния света частицами и мутности системы при образовании мицелл в растворах ПАВ. Также данный метод позволяет определить мицеллярную массу (сумму молекулярных масс молекул, образующих мицеллу) и число агрегации (число молекул в мицелле) и их формы .

Определение ККМ по диффузии проводят, измеряя коэффициенты диффузии (D), которые связаны как с размером мицелл в растворах, так и с их формой и гидратацией. Обычно значение ККМ находят по пересечению двух линейных участков зависимости D от разведения растворов. Наблюдение за диффузией проводится обычно при введении в растворы дополнительного компонента – метки мицелл, в качестве которой в последнее время используют радиоактивные изотопы, не смещающие мицеллярного равновесия.

Нахождение ККМ рефрактометрическим методом основано на изменении коэффициента преломления растворов ПАВ при мицеллообразовании. Этот метод удобен тем, что не требует введения дополнительных компонентов.

В основе определения ККМ ультраакустическим методом лежит изменение характера прохождения ультразвука через раствор при образовании мицелл. При изучении ионогенных ПАВ этот метод удобен даже для весьма разбавленных растворов (с низкими значениями ККМ), системы с неионогенными веществами труднее поддаются характеристике этим методом.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта